Math 259A Lecture 20 Notes

Daniel Raban

November 15, 2019

1 Distinguishing Group von Neumann Algebras

1.1 $L(\mathbb{F}_2)$ and $L(S_{\infty})$ are nonisomorphic

We showed that if Γ is an ICC group, then $L(\Gamma)$ is a II_1 factor. We have many examples of ICC groups.

Example 1.1. S_{∞} , the group of finite permutations of N is ICC.

Example 1.2. \mathbb{F}_n , the free group on $n \geq 2$ elements, is ICC.

Example 1.3. If $H \neq 1$ and Γ_0 is an infinite group, the wreath product of H and Γ_0 is ICC.

It is not clear that different groups gives different II_1 factors. After all, there is only 1 kind of type I_{∞} factor, $\mathcal{B}(\ell^2(\mathbb{N}))$.

Recall that if a factor M has a trace state, then M is a finite factor. Later, we will show that this is an iff.

Definition 1.1. A II_1 factor M (with a trace state τ) has **property Gamma** if for all $x_1, \ldots, x_n \in M$ and $\varepsilon > 0$, there exists some $u \in U(M)$ such that $\tau(u) = 0$ and $||ux_iu^* - x_i||_{\tau} < \varepsilon$ for all i.

Here, the norm is $||x||_{\tau} = \tau (x^* x)^{1/2}$. This comes from an inner product, so we may call this $||x||_2$.

Proposition 1.1. If Γ Is locally finite and ICC, then $L(\Gamma)$ has property Gamma.

Proof. $L(\Gamma) = \{\sum c_g u_g : c_g \in \mathbb{C}, \ell^2 \text{ summable convolvers}\}$. Then $\mathbb{C}\Gamma$ is a *-subalgebra. If $x_1^0, \ldots, x_n^0 \in \mathbb{C}\Gamma$, then take a finite subgroup containing them. Now we can pick a unitary convolver outside of this finite subgroup.

Proposition 1.2. $L(\mathbb{F}_2)$ does not have property Gamma.

To prove this, we will prove a lemma.

Lemma 1.1. Let Γ be an ICC group. Assume exists a set $S \subseteq \Gamma$ and $g_1, g_2, g_3 \in \Gamma$ such that

1. $S \cup g_1 S g_1^{-1} \cup \{e\} = \Gamma$,

2.
$$S, g_2Sg_2^{-1}, g_3Sg_3^{-1}$$
 are disjoint.

Then $L(\Gamma)$ does not have property Γ .

Proof. Assume $L(\Gamma)$ has property Gamma. So for any $\varepsilon > 0$, there is a $u \in U(L(\Gamma))$ with $\tau(u) = 0, u = \sum c_g u_g, c_e = 0$, and $||uu_{g_i}u^* - u_{g_i}||_2 < \varepsilon$ for i = 1, 2, 3. This says that $\sum_{g \in \Gamma} |c_{g_i g g_i^{-1}} - c_g|^2 < \varepsilon^2$ for i = 1, 2, 3. For any $F \subseteq \Gamma$, denote $\nu(F) = \sum_{g \in G} |c_g|^2$ (so $\nu(\Gamma) = 1$). Then, by the triangle inequality in $|| \cdot ||_{\ell^2(S)}$,

$$\left| \left(\sum_{g \in S} |c_g|^2 \right)^{1/2} - \left(\sum_{g \in S} |c_{g_i g g_i^{-1}}|^2 \right)^{1/2} \right| \le \left(\sum_{g \in S} |c_g - c_{g_i g g_i^{-1}}|^2 \right)^{1/2} < \varepsilon.$$

That is, $|\nu(S)^{1/2} - \nu(g_i S g_i^{-1})^{1/2}| < \varepsilon$. So

$$|\nu(S) - \nu(g_i S g_i^{-1})| \le 2\varepsilon.$$

But by property (1),

$$\nu(\Gamma) \le \nu(S) + \nu(g_1 S g_1^{-1}) + \nu(\{e\})$$
$$\le \nu(S) + \nu(S) + 2\varepsilon$$
$$= 2\nu(S) + 2\varepsilon$$

By property (2), we have

$$1 \ge \nu(S) + \nu(g_2 S g_2^{-1}) + \nu(g_3 S g_3^{-1}) \ge 3\nu(S) - 4\varepsilon.$$

This is a contradiction.

Now we can prove the proposition.

Proof. Let $\Gamma = \mathbb{F}_2$ with S, the set of words that start with a^n for $n \neq 0$. Then take $g_1 = a$, $g_2 = b$, and $g_3 = b^{-1}$. These satisfy properties (1) and (2), so by the lemma, \mathbb{F}_2 does not have property Gamma.

Remark 1.1. This kind of partition of a group is generally called a **paradoxical parti**tion. This is a similar kind of thing as what happens in the Banach-Tarski paradox. In that case, $SO(3) \supseteq \mathbb{F}_2$, and we use this paradoxical partition in that proof.

Corollary 1.1. $L(\mathbb{F}_2) \neq L(S_\infty)$.

1.2 Loss of information from forming $L(\Gamma)$ from Γ

However, this proof is very ad-hoc. It is difficult to tell apart the structure of $L(\Gamma)$ for different groups Γ . The functor $\Gamma \mapsto \mathbb{C}\Gamma$ loses some information. But then $\Gamma \mapsto \overline{\mathbb{C}\Gamma} = L(\Gamma)$ loses a lot of information!

Proposition 1.3. $\mathbb{C}[\mathbb{Z}_2 \times \mathbb{Z}_2]$ and $\mathbb{C}\mathbb{Z}_4$ are both isomorphic to \mathbb{C}^4 .

This is because of the torsion. In fact, we have the following fact:

Proposition 1.4. Let Γ be abelian and countably infinite. Then there is a *-algebra isomorphism $(L(\Gamma), \tau) \cong (L^{\infty}([0, 1]), \int \cdot dm)$

This loss of information happens when going from $\mathbb{C}\Gamma \mapsto L(\Gamma)$.

Proposition 1.5. \mathbb{CZ}^n are nonisomorphic for different n.

Proof. The invertible elements in \mathbb{CZ}^n are $\mathbb{Z}^n(\mathbb{C}\setminus\{0\})$.

Here is a conjecture:

Theorem 1.1 (Kaplansky). If Γ is torsion free, then $Inv = \Gamma \cdot (\mathbb{C} \setminus \{0\})$.

This is true if Γ is an **orderable** group. In fact, \mathbb{F}_n is orderable, and many amenable groups are orderable.

Definition 1.2. If Γ is a group, its group C^* -algebra is $C_r^*(\Gamma) := \overline{\mathbb{C}(\Gamma)}^{\text{norm}} = \text{span } \overline{\lambda(\Gamma)}^{\text{norm}}$.

 $C^*(\Gamma)$ has lots and lots of unitary elements.

Proposition 1.6. Suppose Γ is abelian and torsion-free. If U_0 is the connected component of 1, $U(C_r^*)/U_0 \cong \Gamma$.

So this algebra does remember the group.

1.3 Amenable groups

The real property we care about here is amenability. Here is a definition due to von Neumann in the 30s:

Definition 1.3. A group Γ is **amenable** if it has an **invariant mean**, i.e. a state φ on $\ell^{\infty}(\Gamma)$ such that $\varphi(g^{-1}f) = \varphi(f)$ for all $f \in \ell^{\infty}$ and $g \in \Gamma$ ($\Gamma \circlearrowright \ell^{\infty}(\Gamma)$ by left translation on coordinates).

Example 1.4. \mathbb{Z}^n is amenable for any n.

Example 1.5. S_{∞} is amenable.

Definition 1.4. Γ has **Følner's property** if for any nonempty, finite $F \subseteq \Gamma$ and $\varepsilon > 0$, there exists a finite $K \subseteq \Gamma$ such that

$$\frac{|FK \triangle K|}{|K|} < \varepsilon.$$

This is same as saying that

$$\frac{|gK \triangle K|}{|K|} < \varepsilon \qquad \forall g \in F.$$

Theorem 1.2. The Følner property implies ammenability.

Proof. If Γ has F and is countable, then there exists a sequence $K_n \subseteq \Gamma$ with

$$\frac{|g_i K_n \triangle K_n|}{|K_n|} \xrightarrow{n \to \infty} 0.$$

Choose a non-principal ultrafilter ω on \mathbb{N} , and define $\varphi(f) = \lim_{n \to \omega} \frac{1}{|K_n|} \sum_{g \in K_n} f(g)$. This is called a **Banach limit**. So $f \mapsto \varphi(f)$ is linear from $\ell^{\infty}(\Gamma) \to \mathbb{C}$, $\varphi(1) = 1$, and $\varphi(g_i^{-1}f) = \varphi(f)$ for all i.

Remark 1.2. We only need to show that $\varphi(g_i^{-1}f) = \varphi(f)$ for the generators of the group. **Example 1.6.** \mathbb{Z} is amenable because the sets $K_n = [-n, n]$ gives it the Følner property. **Example 1.7.** Locally finite groups are amenable because they satisfy the Følner property.

Proposition 1.7. If a collection of groups H_i is amenable, then $\bigoplus_i H_i$ is amenable.

Example 1.8. $\mathbb{Z} \rtimes \mathbb{Z}^n$ and $\mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}^n$ are ICC and amenable.

Theorem 1.3 (Murray-von Neumann, 1943). All locally finite ICC groups give the same II_1 factor. In fact, all AFD factors are isomorphic to $L(S_{\infty})$.

Definition 1.5. A II_1 factor M with a trace τ is called **approximately finite dimensional (AFD)** if given any x_1, \ldots, x_n and $\varepsilon > 0$, there exists a finite dimensional von Neumann algebra $B \subseteq M$ and $y_1, \ldots, y_n \in B$ such that $||x_i - y_i|| < \varepsilon$ for all i

Proposition 1.8. If Γ is locally finite, then $L(\Gamma)$ is AFD.

We also have the following remarkable theorem:

Definition 1.6. A II_1 factor is **amenable** if it has an invariant mean (or a hypertrace).

Theorem 1.4 (Connes, 1976). All II_1 factors M that are amenable are isomorphic to $L(S_{\infty})$.

Proposition 1.9. $L(\Gamma)$ is amenable if and only if Γ is amenable.

Proposition 1.10. \mathbb{F}_2 is not amenable.

This gives another proof that S_{∞} and \mathbb{F}_2 have different group von Neumann algebras. Corollary 1.2. $L(\mathbb{F}_2) \cong L(S_{\infty})$.