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1 Distinguishing Group von Neumann Algebras

1.1 L(Fy) and L(S,) are nonisomorphic

We showed that if T" is an ICC group, then L(T') is a I; factor. We have many examples
of ICC groups.

Example 1.1. S, the group of finite permutations of N is ICC.
Example 1.2. F,,, the free group on n > 2 elements, is ICC.

Example 1.3. If H # 1 and I’y is an infinite group, the wreath product of H and I'y is
I1CC.

It is not clear that different groups gives different 11 factors. After all, there is only 1
kind of type I, factor, B(¢£?(N)).

Recall that if a factor M has a trace state, then M is a finite factor. Later, we will
show that this is an iff.

Definition 1.1. A II; factor M (with a trace state 7) has property Gamma if for
all 1,...,2, € M and € > 0, there exists some u € U(M) such that 7(u) = 0 and
luziu* — ;|| < e for all i.

Here, the norm is ||z||; = 7(z*z)'/2. This comes from an inner product, so we may call
this ||z]|2.

Proposition 1.1. If T’ Is locally finite and ICC, then L(T') has property Gamma.

Proof. L(T') = {3 cquy : ¢4 € C,¢? summable convolvers}. Then CI is a *-subalgebra. If

x(l), ...,22 € CT, then take a finite subgroup containing them. Now we can pick a unitary
convolver outside of this finite subgroup. O

Proposition 1.2. L(FF3) does not have property Gamma.

To prove this, we will prove a lemma.



Lemma 1.1. Let I' be an ICC group. Assume exists a set S CT' and g1,g2,93 € I’ such
that

1. SUgSg; P ufe} =T,
2. S, 92592_1,93593_1 are disjoint.
Then L(I") does not have property T.

Proof. Assume L(I') has property Gamma. So for any € > 0, there is a u € U(L(I")) with
T(u) = 0, u = Y cgug, ce = 0, and [Juugu* — ugll2 < € for i = 1,2,3. This says that
>ger |cgigg;1 —¢y|? < & fori =1,2,3. For any F C T, denote v(F) = pppe legl? (so
v(I') = 1). Then, by the triangle inequality in || - [|,2(g)
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That is, [(S)"/? — v(g:Sg; })Y/?| < e. So
v(S) — v(g:iSg; )| < 2e.
But by property (1),

v(S) + v(91Sg; ) + ey
v(S)+v(S)+ 2
%

By property (2), we have
1> v(S) +v(g299; ") +v(g3Sg3h) > 3v(S) — 4e.
This is a contradiction. O
Now we can prove the proposition.

Proof. Let I' = Fo with .S, the set of words that start with a™ for n # 0. Then take g1 = a,
g2 = b, and g3 = b~!. These satisfy properties (1) and (2), so by the lemma, F3 does not
have property Gamma. O

Remark 1.1. This kind of partition of a group is generally called a paradoxical parti-
tion. This is a similar kind of thing as what happens in the Banach-Tarski paradox. In
that case, SO(3) 2 Fo, and we use this paradoxical partition in that proof.

Corollary 1.1. L(F3) # L(S)-



1.2 Loss of information from forming L(I") from T’

However, this proof is very ad-hoc. It is difficult to tell apart the structure of L(I") for
different groups I'. The functor I' — CI loses some information. But then I' — CI" = L(T)
loses a lot of information!

Proposition 1.3. C[Zy x Zs] and CZy are both isomorphic to C*.
This is because of the torsion. In fact, we have the following fact:

Proposition 1.4. Let T be abelian and countably infinite. Then there is a *-algebra iso-
morphism (L(T'), ) = (L*°([0,1]), [ - dm)

This loss of information happens when going from CI' — L(I").

Proposition 1.5. CZ" are nonisomorphic for different n.

Proof. The invertible elements in CZ" are Z"(C \ {0}). O
Here is a conjecture:

Theorem 1.1 (Kaplansky). If I' is torsion free, then Inv =T - (C\ {0}).

This is true if I' is an orderable group. In fact, ), is orderable, and many amenable
groups are orderable.

norm norm

Definition 1.2. If T is a group, its group C*-algebra is C(T") := C(T") = span \(T")
C*(T") has lots and lots of unitary elements.

Proposition 1.6. Suppose I' is abelian and torsion-free. If Uy is the connected component

of 1, U(CY)/Uy =T.

So this algebra does remember the group.

1.3 Amenable groups

The real property we care about here is amenability. Here is a definition due to von
Neumann in the 30s:

Definition 1.3. A group I' is amenable if it has an invariant mean, i.e. a state ¢ on
¢°(T') such that p(g=1f) = @(f) for all f € £*° and g € ' (I' © £>°(T') by left translation
on coordinates).

Example 1.4. Z" is amenable for any n.

Example 1.5. S, is amenable.



Definition 1.4. I' has Fdlner’s property if for any nonempty, finite ¥ C I" and € > 0,
there exists a finite K C I" such that

|[FKAK)| -
— <.
K|
This is same as saying that
lgKAK|
— <e¢ Vg € F.
K|

Theorem 1.2. The Fglner property implies ammenability.

Proof. If I has F' and is countable, then there exists a sequence K, C I" with
19 Kn AK | oo
re

0.

Choose a non-principal ultrafilter w on N, and define ¢(f) = lim,_, ﬁ de x, [(9)-
This is called a Banach limit. So f — ¢(f) is linear from (*°(I') — C, (1) = 1, and
(g, f) = @(f) for all i. O
Remark 1.2. We only need to show that (g, L#) = o(f) for the generators of the group.
Example 1.6. Z is amenable because the sets K,, = [—n,n] gives it the Fglner property.
Example 1.7. Locally finite groups are amenable because they satisfy the Fglner property.
Proposition 1.7. If a collection of groups H; is amenable, then @, H; is amenable.

Example 1.8. Z x Z™ and Z /27 x Z"™ are ICC and amenable.

Theorem 1.3 (Murray-von Neumann, 1943). All locally finite ICC groups give the same
11 factor. In fact, all AFD factors are isomorphic to L(Sx).

Definition 1.5. A I, factor M with a trace 7 is called approximately finite dimen-
sional (AFD) if given any z1,...,z, and € > 0, there exists a finite dimensional von
Neumann algebra B C M and y1,...,y, € B such that ||x; — y;|| < & for all i

Proposition 1.8. IfT' is locally finite, then L(T') is AFD.
We also have the following remarkable theorem:
Definition 1.6. A II; factor is amenable if it has an invariant mean (or a hypertrace).

Theorem 1.4 (Connes, 1976). All I1; factors M that are amenable are isomorphic to
L(Sx).

Proposition 1.9. L(T") is amenable if and only if T' is amenable.
Proposition 1.10. Fs is not amenable.

This gives another proof that S, and Fy have different group von Neumann algebras.
Corollary 1.2. L(F3) 2 L(S)-
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