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1 Distinguishing Group von Neumann Algebras

1.1 L(F2) and L(S∞) are nonisomorphic

We showed that if Γ is an ICC group, then L(Γ) is a II1 factor. We have many examples
of ICC groups.

Example 1.1. S∞, the group of finite permutations of N is ICC.

Example 1.2. Fn, the free group on n ≥ 2 elements, is ICC.

Example 1.3. If H 6= 1 and Γ0 is an infinite group, the wreath product of H and Γ0 is
ICC.

It is not clear that different groups gives different II1 factors. After all, there is only 1
kind of type I∞ factor, B(`2(N)).

Recall that if a factor M has a trace state, then M is a finite factor. Later, we will
show that this is an iff.

Definition 1.1. A II1 factor M (with a trace state τ) has property Gamma if for
all x1, . . . , xn ∈ M and ε > 0, there exists some u ∈ U(M) such that τ(u) = 0 and
‖uxiu∗ − xi‖τ < ε for all i.

Here, the norm is ‖x‖τ = τ(x∗x)1/2. This comes from an inner product, so we may call
this ‖x‖2.

Proposition 1.1. If Γ Is locally finite and ICC, then L(Γ) has property Gamma.

Proof. L(Γ) = {
∑
cgug : cg ∈ C, `2 summable convolvers}. Then CΓ is a *-subalgebra. If

x0
1, . . . , x

0
n ∈ CΓ, then take a finite subgroup containing them. Now we can pick a unitary

convolver outside of this finite subgroup.

Proposition 1.2. L(F2) does not have property Gamma.

To prove this, we will prove a lemma.

1



Lemma 1.1. Let Γ be an ICC group. Assume exists a set S ⊆ Γ and g1, g2, g3 ∈ Γ such
that

1. S ∪ g1Sg
−1
1 ∪ {e} = Γ,

2. S, g2Sg
−1
2 , g3Sg

−1
3 are disjoint.

Then L(Γ) does not have property Γ.

Proof. Assume L(Γ) has property Gamma. So for any ε > 0, there is a u ∈ U(L(Γ)) with
τ(u) = 0, u =

∑
cgug, ce = 0, and ‖uugiu∗ − ugi‖2 < ε for i = 1, 2, 3. This says that∑

g∈Γ |cgigg−1
i
− cg|2 < ε2 for i = 1, 2, 3. For any F ⊆ Γ, denote ν(F ) =

∑
g∈G |cg|2 (so

ν(Γ) = 1). Then, by the triangle inequality in ‖ · ‖`2(S),∣∣∣∣∣∣∣
∑
g∈S
|cg|2

1/2

−

∑
g∈S
|cgigg−1

i
|2
1/2

∣∣∣∣∣∣∣ ≤
∑
g∈S
|cg − cgigg−1

i
|2
1/2

< ε.

That is, |ν(S)1/2 − ν(giSg
−1
i )1/2| < ε. So

|ν(S)− ν(giSg
−1
i )| ≤ 2ε.

But by property (1),

ν(Γ) ≤ ν(S) + ν(g1Sg
−1
1 ) +����ν({e})

≤ ν(S) + ν(S) + 2ε

= 2ν(S) + 2ε

By property (2), we have

1 ≥ ν(S) + ν(g2Sg
−1
2 ) + ν(g3Sg

−1
3 ) ≥ 3ν(S)− 4ε.

This is a contradiction.

Now we can prove the proposition.

Proof. Let Γ = F2 with S, the set of words that start with an for n 6= 0. Then take g1 = a,
g2 = b, and g3 = b−1. These satisfy properties (1) and (2), so by the lemma, F2 does not
have property Gamma.

Remark 1.1. This kind of partition of a group is generally called a paradoxical parti-
tion. This is a similar kind of thing as what happens in the Banach-Tarski paradox. In
that case, SO(3) ⊇ F2, and we use this paradoxical partition in that proof.

Corollary 1.1. L(F2) 6= L(S∞).
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1.2 Loss of information from forming L(Γ) from Γ

However, this proof is very ad-hoc. It is difficult to tell apart the structure of L(Γ) for
different groups Γ. The functor Γ 7→ CΓ loses some information. But then Γ 7→ CΓ = L(Γ)
loses a lot of information!

Proposition 1.3. C[Z2 × Z2] and CZ4 are both isomorphic to C4.

This is because of the torsion. In fact, we have the following fact:

Proposition 1.4. Let Γ be abelian and countably infinite. Then there is a *-algebra iso-
morphism (L(Γ), τ) ∼= (L∞([0, 1]),

∫
· dm)

This loss of information happens when going from CΓ 7→ L(Γ).

Proposition 1.5. CZn are nonisomorphic for different n.

Proof. The invertible elements in CZn are Zn(C \ {0}).

Here is a conjecture:

Theorem 1.1 (Kaplansky). If Γ is torsion free, then Inv = Γ · (C \ {0}).

This is true if Γ is an orderable group. In fact, Fn is orderable, and many amenable
groups are orderable.

Definition 1.2. If Γ is a group, its group C∗-algebra is C∗r (Γ) := C(Γ)
norm

= spanλ(Γ)
norm

.

C∗(Γ) has lots and lots of unitary elements.

Proposition 1.6. Suppose Γ is abelian and torsion-free. If U0 is the connected component
of 1, U(C∗r )/U0

∼= Γ.

So this algebra does remember the group.

1.3 Amenable groups

The real property we care about here is amenability. Here is a definition due to von
Neumann in the 30s:

Definition 1.3. A group Γ is amenable if it has an invariant mean, i.e. a state ϕ on
`∞(Γ) such that ϕ(g−1f) = ϕ(f) for all f ∈ `∞ and g ∈ Γ (Γ � `∞(Γ) by left translation
on coordinates).

Example 1.4. Zn is amenable for any n.

Example 1.5. S∞ is amenable.
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Definition 1.4. Γ has Følner’s property if for any nonempty, finite F ⊆ Γ and ε > 0,
there exists a finite K ⊆ Γ such that

|FK4K|
|K|

< ε.

This is same as saying that

|gK4K|
|K|

< ε ∀g ∈ F.

Theorem 1.2. The Følner property implies ammenability.

Proof. If Γ has F and is countable, then there exists a sequence Kn ⊆ Γ with

|giKn4Kn|
|Kn|

n→∞−−−→ 0.

Choose a non-principal ultrafilter ω on N, and define ϕ(f) = limn→ω
1
|Kn|

∑
g∈Kn

f(g).

This is called a Banach limit. So f 7→ ϕ(f) is linear from `∞(Γ) → C, ϕ(1) = 1, and
ϕ(g−1

i f) = ϕ(f) for all i.

Remark 1.2. We only need to show that ϕ(g−1
i f) = ϕ(f) for the generators of the group.

Example 1.6. Z is amenable because the sets Kn = [−n, n] gives it the Følner property.

Example 1.7. Locally finite groups are amenable because they satisfy the Følner property.

Proposition 1.7. If a collection of groups Hi is amenable, then
⊕

iHi is amenable.

Example 1.8. Z o Zn and Z/2Z o Zn are ICC and amenable.

Theorem 1.3 (Murray-von Neumann, 1943). All locally finite ICC groups give the same
II1 factor. In fact, all AFD factors are isomorphic to L(S∞).

Definition 1.5. A II1 factor M with a trace τ is called approximately finite dimen-
sional (AFD) if given any x1, . . . , xn and ε > 0, there exists a finite dimensional von
Neumann algebra B ⊆M and y1, . . . , yn ∈ B such that ‖xi − yi‖ < ε for all i

Proposition 1.8. If Γ is locally finite, then L(Γ) is AFD.

We also have the following remarkable theorem:

Definition 1.6. A II1 factor is amenable if it has an invariant mean (or a hypertrace).

Theorem 1.4 (Connes, 1976). All II1 factors M that are amenable are isomorphic to
L(S∞).

Proposition 1.9. L(Γ) is amenable if and only if Γ is amenable.

Proposition 1.10. F2 is not amenable.

This gives another proof that S∞ and F2 have different group von Neumann algebras.

Corollary 1.2. L(F2) 6∼= L(S∞).
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